Characterization of olfactory deficits in the rat following administration of 2,6-dichlorobenzonitrile (dichlobenil), 3,3'-iminodipropionitrile, or methimazole.
نویسندگان
چکیده
The histopathology of the olfactory mucosal lesion associated with ip administration of 2,6-dichlorobenzonitrile (dichlobenil) and 3,3'-iminodipropionitrile (IDPN) has been well documented. Whether there is an olfactory deficit associated with the partial loss of the olfactory mucosa (localized around the dorsal medial meatus of the nasal cavity) has yet to be determined. Dichlobenil (100 mg/kg) or IDPN (200 mg/kg) was administered ip to adult male Long-Evans rats previously trained in an olfactory task to find a food pellet buried in approximately 7.5 cm of bedding in a 0.61 x 1.2 x 0.61-m Plexiglass chamber. As a positive control, another group received 300 mg/kg ip of 1-methyl-2-mercaptoimidazole (methimazole), a dosing regimen which destroys nearly all of the olfactory mucosa. All three compounds caused a transient increase in the mean latency to find the pellet, with the magnitude of the effect positively correlated with the extent of the olfactory lesion. In order to determine whether these deficits resulted from olfactory dysfunction or impaired cognitive function (a deficit previously attributed to IDPN exposure), another group of rats was dosed as above and tested in another spatial memory task, the Morris water maze (MWM), which is less dependent upon olfactory function. No performance deficit was detected in the MWM. These data suggest that the transient olfactory deficit in the dichlobenil-, IDPN-, and methimazole-treated rats is attributable to defective olfactory function.
منابع مشابه
Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils.
2,6-Dichlorobenzamide (BAM), a persistent metabolite from the herbicide 2,6-dichlorobenzonitrile (dichlobenil), is the pesticide residue most frequently detected in Danish groundwater. A BAM-mineralizing bacterial community was enriched from dichlobenil-treated soil sampled from the courtyard of a former plant nursery. A BAM-mineralizing bacterium (designated strain MSH1) was cultivated and ide...
متن کاملDegradation and mineralization of nano - molar concentrations of the 2 herbicide dichlobenil and its persistent metabolite 2 , 6 - dichlorobenzamide 3
ion wells (29). Not only the pesticides themselves are monitored, selected stable metabolites 8 are also included and often these are detected more frequently than the pesticide itself (3). The most 9 commonly encountered pesticide residue in Danish groundwater is 2,6-dichlorobenzamide (BAM). 10 BAM is a metabolite produced from partial degradation of the benzonitrile herbicide 2,611 dichlorobe...
متن کاملVestibular toxicity of cis-2-pentenenitrile in the rat.
cis-2-Pentenenitrile, an intermediate in the synthesis of nylon and other products, causes permanent behavioral deficits in rodents. Other low molecular weight nitriles cause degeneration either of the vestibular sensory hair cells or of selected neuronal populations in the brain. Adult male Long-Evans rats were exposed to cis-2-pentenenitrile (0, 1.25, 1.50, 1.75, or 2.0mmol/kg, oral, in corn ...
متن کاملThe comparative metabolism of 2,6-dichlorothiobenzamide (Prefix) and 2,6-dichlorobenzonitrile in the dog and rat.
1. A single oral dose of either [(14)C]Prefix or 2,6-dichlorobenzo[(14)C]nitrile to rats is almost entirely eliminated in 4 days: 84.8-100.5% of (14)C from [(14)C]Prefix is excreted, 67.3-79.7% in the urine, and 85.8-97.2% of (14)C from 2,6-dichlorobenzo-[(14)C]nitrile is excreted, 72.3-80.7% in the urine. Only 0.37+/-0.03% of the dose of [(14)C]Prefix and 0.25+/-0.03% of the dose of 2,6-dichlo...
متن کاملThe monophenolic metabolites of the herbicide 2,6-dichlorobenzonitrile in animals as uncouplers of oxidative phosphorylation.
1. Both monophenolic metabolites of 2,6-dichlorobenzonitrile (2,6-dichloro-3-hydroxybenzonitrile and its 4-hydroxy analogue) added to starved yeast cells incubated with a limited quantity of glucose cause a significant rise in oxygen consumption of the cells. 2. The same compounds induce adenosine-triphosphatase activity in isolated intact rat-liver mitochondria. 3. The possible role of the hyd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fundamental and applied toxicology : official journal of the Society of Toxicology
دوره 29 1 شماره
صفحات -
تاریخ انتشار 1996